Wavelets as chromatin texture descriptors for the automated identification of neoplastic nuclei.
نویسندگان
چکیده
Chromatin distribution reflects the organization of the DNA of a nucleus and contains important cellular diagnostic and prognostic information. Feulgen staining of breast tissue enables the chromatin distribution of the nucleus to be visualized in the form of texture. Describing texture in an objective and quantitative way by means of a set of texture parameters, combined with the study of the relationship of such parameters to the pathobiological cell properties, is useful both for reduction of the subjectivity inherently coupled to visual observation and for more accurate prognosis or diagnosis. We have presented an automated classification scheme for the diagnosis and grading of invasive breast cancer. The input to this scheme was a digitized microscopical image, from which nuclei were segmented. Chromatin texture was described using a set of textural parameters that include first- and second-order statistics of the image grey levels. The more recently developed wavelet energy parameters were also included in our study. Classification was performed by a Knn-classifier, which is a versatile multivariate statistical classification technique. We investigated the role of the tissue preparation technique and found that parameters derived from cytospins were better texture descriptors than those from sections. A 100% correct classification was achieved in a patient diagnosis experiment and 82% in a nuclear grading experiment.
منابع مشابه
Automated differentiation of benign and malignant liver tumors by Ultrasound Images
Background & Aims: Early detection and reliable differentiation of benign and malignant liver tumors could lead to improved cure rate and costs. Ultrasound image (US) is a convenient medical imaging method for interpreting liver tumors. Visual inspection of ultrasound images sometimes is combined with error and needs biopsy to confirm whether a tumor would be benign or malignant. The aim of thi...
متن کاملTexture Classification Based on Gabor Wavelets
This paper presents the comparison of Texture classification algorithms based on Gabor Wavelets. The focus of this paper is on feature extraction scheme for texture classification. The texture feature for an image can be classified using texture descriptors. In this paper we have used Homogeneous texture descriptor that uses Gabor Wavelets concept. For texture classification, we have used onlin...
متن کاملTexture analysis of cervical cell nuclei by segmentation of chromatin patterns.
Texture parameters of the nuclear chromatin pattern can contribute to the automated classification of specimens on the basis of single cell analysis in cervical cytology. Current texture parameters are abstract and therefore hamper understanding. In this paper texture parameters are described that can be derived from the chromatin pattern after segmentation of the nuclear image. These texture p...
متن کاملTexture analysis by multi-resolution fractal descriptors
This work proposes a texture descriptor based on fractal theory. The method is based on the Bouligand-Minkowski descriptors. We decompose the original image recursively into 4 equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The propose...
متن کاملNew image descriptors based on color, texture, shape, and wavelets for object and scene image classification
This paper presents new image descriptors based on color, texture, shape, and wavelets for object and scene image classification. First, a new three Dimensional Local Binary Patterns (3D-LBP) descriptor, which produces three new color images, is proposed for encoding both color and texture information of an image. The 3D-LBP images together with the original color image then undergo the Haar wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of microscopy
دوره 197 Pt 1 شماره
صفحات -
تاریخ انتشار 2000